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Abstract: The circular ridge waveguide
(CRW) is a very useful structure for tuningless dual
mode filters and septum polarizers. In this paper we
present a rigorous analysis of the mode spectrum of
CRW which is based on the cylindrical method of
lines (CMOL). The advantage of the CMOL is that
only one space variable need to be discretized and
that spurious modes as well as relative convergence
phenomena are not encountered. Partial dielectric
filling as well as structures with mixed cylindrical/
rectangular boundaries can be easily included in the
analysis. Results will be given for homogeneously
filled CRW and for rectangular waveguides with
cylindrical dielectric blocks.

I. Introduction
Circular ridge waveguides (CRW) are useful for

the design of tuningless dual mode filters and septum
polarizers [1].Successful design of these components
with CRW depends largely on the accurate
characterization of the CRW section. So far only one
attempt has been published to calculate the mode
spectrum of asymmetric CRW using the finite element
method (FEM) [1].In that paper the ridges were shaped
to fit the cylindrical coordinate system (Fig. lb). If a
cylindrical discretization scheme is employed, this
measure is useful to avoid discretization of rectangular
structural details. The idea of shaping the structure to
avoid rectangular ridges in a cylindrical coordinate
system has been successfully applied before to the mode
matching analysis of metal septum loaded circular
waveguide filters [2]. With this step mathematical
complications in the solution of the coupling integrals

could be eliminated. The good agreement between
measured and predicted results ([2]) has justified this
step. Furthermore, in particular when the ridge thickness
is such that milling techniques can be applied, it should
make no difference whether or not the ridges are of
rectangular of angled shape.

Accurate characterization of the CRW structure
requires a large number of higher order modes. In
particular if the CRW is to be used as a section in a dual
mode resonal.or. To represent also the highest order
mode with sufficient accuracy, the finite element
analysis involves a very fine two-dimensional
discretization,This leads not only to large computer
memory and long computation time, but introduces also
uncertainties with respect to the solutions, because of the
potential for spurious modes in the FEM. To avoid these
problems we have utilized the cylindrical method of
lines (CMOL,) [3] instead. The CMOL is a finite
difference method, which discretizes only the angular
space direction of the CRW while analytical solutions
are sought for the radial direction. In comparison to finite
element or finite difference methods, which require a
two-dimensicmal discretization, the CMOL consumes
much less computer memory space and leads also to a
much simpler discretization scheme. Since spurious
solutions and relative convergence problems are not
encountered, the method shows great potential for fast
and accurate CAD of waveguide components. The
following outlines the principle steps of the CMOL. By

m
taking advantage of the singular value decomposition , ,
technique [4], poles in the determinant calculation are
eliminated. Results are pre~ented for the mode spectrum
of CRW sections with four and five ridges, respectively.
The flexibility of the method is illustrated by calculating
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also the mode spectrum of circular dielectric rods in a
rectangular waveguide housing and vice versa.

The generalized waveguide cross-section for
which the method is derived is shown in Fig. la. The
electromagnetic fields in the uniform region can be
derived from the longitudinal field components
@e,~x (E,, Hz) . Both field components satisfy the

source-ffee Helmholtz equation in polar coordinates

and the boundary conditions depending on the structure

and modes we are interested in, where k2=co2W. Since
the problem can not be solved analytically for the whole
region, the calculation domain is discretized along the
angular direction by N straight lines in r-direction. This
yields for the O-variables

4+= 4++ (~-1) ~ = 2;k>k=L2.JJ (2)

with h = 2rc/Nbeing the angular spacing between them.
Using the central finite difference scheme for the angu-
lar variable 8, a second order finite difference operator
[P] can be found which depends on the lateral boundary
conditions. For generally asymmetric structures, [P] can
be found in [3].

The discretized Helmholtz equation is now rep-
resented by a set of coupled ordinary differential equa-
tions

where L2 = k2-f12for inhomogeneous waveguides; L2 =

O for TEM transmission lines or static problems; L2 =

k2 for TE and TM analysis of homogeneous
w~veguides. Multiplying equ. (3) with an orthogonal
transformation matrix [T] [3]

T~,= { cos ~ki + sh~ki] /a@,

~ki = ikh, h=2@N, i,k=l,2,...,N

from the left and right sides, respectively, matrix @] can
be diagonalized. This yields a set of decoupled Helm-
holtz equations of the following form

(4)

2sin (tpi/2)
Li= h (5)

where ui (i= 1,2,3,...J$ is called the transformed poten-
tial fUnCtiOn and E = [UI,uz,...,uN] = [T]~,

In every uniform region, a solution of equ. (4)
may be written as a superposition of Bessel functions.
The seleetion of different types of Bessel functions
depends on the individual applications. For the guided-
wave structures considered here, a combination of
Bessel functions of ~-order can be used

Ui = AiJk (b-) +BiNL (b) (6)

TEITM Cutoff Frequencies of Homogeneous
Waveguides

Taking a homogeneous waveguide with arbit.my
contour an example (El = &2in Fig. la), the finite field
values at r = Orequire Bi = O. This leads directly to the
characteristic equation for TM modes

where Rk is the radius of the k-th discretization line. In
other words, one needs only to input the radius Rk of the
contour (k= 1,2,3,...,N) at each discretization line and
then solve for

‘et( [TkiJ~, (k.Rkj] ) = O (8)

where J~i(kCRk)is the ~-order Bessel function of kCRk.

Similarly, TE modes can be obtained if we substitute
J~i(kCRk)in (8) with

dJk (kCRk)
JL (kcRk) = COS (tk, fik) ‘ dr (9)

where, ;k and iik are, respectively, the unit vectors along
the k-th radial line and the outwards normal vector to
the contour.

For the ridged circular waveguide (Fig.lb), the
cross-section is subdivided into several homogeneous
subregions. The number of these subregions is deter-
mined by the number of ridges. In each subregion, the
solution to equ. (4) is given by equ. (5). Since the subre-
gion may contain different material, the field continuity
conditions at interfaces between region I and the other
subregions must be included. Since all the electromag-
netic fields can be related to the potential functions
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$.. h= (EZ,‘z) as clef{ [Z]} =0

must be found.

E= AVxv(($=?)- v(@#)
J(l)&

(lo)

H= ‘Vxv($h?) + V (og~)
jo.ql

(11)

The field continuity condition, for example, for
the Ee yields

[D] denotes the hi-diagonal first order finite difference

operator. Multiplying [T]t and [Tl from the left and right
sides, respectively, the above equation is diagonaIized
and yi~lds one equation per line for the potential u
(ii=[T]@).

The remaining three steps are 1. transform the
known fields from the boundary of the system into the
interface plane, which can be done with the following
equation:

1[~(Yl>YJ 1 =‘,’‘,2

ui (b%)

1hi (Lrz)

“1
.——
~ dr

(13)

(14)

2. establish a relationship in the transformed domain
between the tangential electric field and the surface cur-
rent in the interface. 3. transform all transformed poten-
tial functions back to into the original domain to yield

(15)

Using the condition of zero current distribution in
the interface between two regions, the zeros of

NumericalResults
To test the convergence of the orthogonal trans-

formation matrix [T] obtained for the cylindrical method
of lines, rectangular and circular waveguides are calcu-
lated and compared with analytical solutions. Conver-
gence tests are shown in Fig.2 and Fig.3. It is interesting
to note that convergence for the TMO1 mode in Fig. 2 is
possible with one line only, while the TEl 1 mode
requires at last 15-20 lines. This can be explained by the
fact that the field distribution of the TMO1 mode is con-
stant in angular direction and changes only in radial
direction, which can be described by one line. The field
of the TEl 1 mode, however, changes in radial and angu-
lar direction and thus requires more lines to be charac-
terized accurately. Fig. 4 illustrates the effect of the fifth
ridge, which is the coupling element in a dual mode
CRW resonator, Here the influence on the first two TE
modes with orthogonal polarization is small while the
TM mode increases its cutoff frequency when the fifth
ridge penetrates further into the CRW.

To demonstrate also the flexibility of the method
when structures with mixed coordinate systems are
combined, Fig. 5 shows the propagation constant of the
fundamental hybrid mode in a cylindrical dielectric rod
loaded rectangular waveguide. For the case of Fig. 550
lines were necessary to reach convergence. The typical
computation time for the structures investigated was less
than 2 minut~s per frequency on a SUN SPARC 4 work-
station. Since the computer code was not optimized this
run time can be further improved by a factor of ten.

QQm2!mi.l!!l
We have presented a rigorous calculation of the

mode spectmrn in circular ridge waveguides with five
ridges and dielectric loaded rectangular waveguides
containing circular dielectric rods. The cylindrical
method of lines has been utilized and further developed
to include also dielectric subsections.
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Fig. 1a MoL discretization in a cylindrical coordinate system
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Fig. lb Pattially dielectric-loaded snd circular ridged waveguide
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Fig. 3 MoL results for TE1 ~ and TMO1 modes compared to attalyti-

cal solutions for a circular waveguide, R. = 2.54 cm
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Fig. 5 Diapersion relation of fundamental mode in a dielectric-loaded rectartgu-

Fig,4 Cutoff frequencies of CRW with fifth ridge, RO = 2,54 cm, 6+ = 25°, Et2= 12.5° lar waveguide, b = a/2 = 3.555 mm (WR-2S), R. = 1,27 mm, q = 2.1
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